A Loss Optimization Method Using WD Product for On-Chip Differential Transmission Line Design

Hiroyuki Ito, Kenichi Okada, and Kazuya Masu Integrated Research Institute, Tokyo Institute of Technology

Background

Miniaturization of Si CMOS process

- Cut-off frequency of the NMOS transistor is projected to become 300 GHz at 45 nm technology node in 2010.
- = Clock frequency of digital circuit will reach 15 GHz.
- RF CMOS circuits that can operate at over 10 GHz are reported.

On-chip transmission lines have been becoming increasingly important for high-speed digital and RF circuits.

Problems in transmission line design specific to Si LSI

- Dielectric loss in Si substrate
- Large resistive loss due to the skin effect and the eddy current in Si substrate

Why WD product?

W: Line width, D: Distance between lines The WD product can give the attenuation characteristics of the transmission line.

Structures of DUTs

0.18 μm Standard Si CMOS Process

VV	D	WD	Lossless Zdiff	Type
2.0 μm	1.8 μm	3.6	80 Ω	Α
2.0 μm	2.9 μm	5.8	100 Ω	Α
2.0 μm	4.3 μm	8.6	120 Ω	Α
4.0 μm	2.3 μm	9.2	80 Ω	Α
$4.0~\mu m$	$3.7~\mu m$	14.8	100 Ω	Α
4.0 μm	5.8 μm	23.2	120 Ω	А
6.0 μm	2.6 μm	15.6	80 Ω	Α
6.0 μm	4.6 μm	27.6	100 Ω	А
6.0 μm	7.4 μm	44.4	120 Ω	А
10.0 μm	11.0 μm	110.0	120 Ω	А
4.0 μm	2.3 μm	9.2	80 Ω	В
4.0 μm	3.7 μm	14.8	100 Ω	В
4.0 μm	5.8 μm	23.2	120 Ω	В
2.0 μm	2.9 μm	5.8	100 Ω	В
6.0 μm	4.6 μm	27.6	100 Ω	В

- Thicknesses of metal and dielectric layers: ≈1 μm
- A line length of the differential transmission line (DTL): 1 mm
- Type A: DTL (M5)
- Type B: DTL (M5) with underlying metals (M1, M2, M3 and M4) L&S of M1, M2, M3 and M4 are 1.0 μm.

Measurement system

- Vector network analyzer (Agilent, E8364B & N4421B)
- GSGSG type RF probes (Cascade, Infinity)
- SOLT calibration using impedance standard substrate of Cascade
- Pad de-embedding: Open and short patterns

Characteristics

Empirical relationships found $R_{
m diff} \propto rac{\sqrt{D}}{W}, \quad G_{
m diff} \propto rac{W}{\sqrt{D}}, \quad Z_{
m diff} \propto rac{D}{\sqrt{W}} \qquad \qquad \alpha \simeq rac{1}{2} \left(rac{R_{
m diff}}{Z_{
m diff}} + G_{
m diff} Z_{
m diff}
ight)$

Attenuation constant:

Attenuation characteristics depend on the WD product.

Without underlying metal

With underlying metal

Attenuation model

Attenuation ATT. can be characterized by a simple function of WD [µm²] and frequency f [GHz].

 $ATT. = a + \frac{bf^c}{\sqrt{WD}} + df\sqrt{WD}$ Dielectric Loss Loss

Conclusions

(This Study)

We can design on-chip transmission lines!!