1D-14 A Multi-Drop Transmission-Line Interconnect in Si LSI

Junki Seita, Hiroyuki Ito, Kenichi Okada, Takashi Sato and Kazuya Masu Integrated Research Institute, Tokyo Institute of Technology, Japan

Background

Issues for Si LSI:

The delay time and power consumption

in global interconnect are the enduring obstacles.

Designed as RC lines, Divided by several repeaters

Transmission Line Interconnect:

- Faster signaling than a conventional RC interconnect

Signals can transmit through the proposed interconnect although deterministic jitter is appeared.

(Signals can propagate at high speed.)

- Power consumption does not depend on a line length. (Repeaters are not necessary for high-speed signaling.)

Purpose

The conventional on-chip TL interconnects are peer-to-peer ones.

We propose the on-chip TL interconnect with branches.

Branching Structures

*Z*0/2 OUT2 A brute-force branch

XZ0 : characteristic impedance

Same Z0 in each output line

Schematic & Micrograph

A 6-mm-long TL interconnect with a branch

is fabricated by using a 0.18µm standard Si

CMOS process.

Chip micrograph.

[mW]

consumption

Power

W =75µm In o-W =60µm Schematic of fabricatec circuit.

Microstrip-type single-ended transmission line.

Measurement Results

investigated by time-domain measurements.

*≒*Z0

IN

OUT2

OUT'

 \rightarrow Input impedance of parallel transmission-lines becomes half of Z0.

\rightarrow Impedance mismatch is caused.

The used structure

Short branch-line

Large input impedance of transister

 \rightarrow This structure reduce the effect of reflection.

Test Greut for Branches

Transistors at branching nodes are modeled

The proposed TL interconnect with branch can transmit 4Gbps signal.

Frequency [Gbps]

Comparison of power consumption.

[1]H. Ito, et al., ``4 Gbps on-chip interconnection using differential transmission line, ' IEEE A-SSCC, pp. 417-420, 2005.

[2]S. Gomi, et al., ``Di connect for high speed and low power global wiring," IEEE CICC, pp. 325-328, 2004.

et al., "Near speed-of-light signaling over on-chip electrical interconnects. ' IEEE Journal of Solid-State Circuits, vol. 38, no. 5, pp. 834-838, 2003.

[4]E. D. Kyriakis-Bitzaros, et al., "Realistic end-to-end simulation of the optoelectronics

At 3mm At 6mm Output eye-patterns(4Gbps).

The proposed interconnect achieves the lowest power from 1.5 to 4Gbps although it has a branch.

Delay of existing interconnection schem	
	Delay[ps@1cm]
The proposed interconnect	144
Differential transmission lineinterconnect[1]	420
RC Line[3]	500
Modulation[3]	339
Edge-emitting laser[4]	379
VCSEL[4]	446

The proposed interconnect is fastest.

A test circuit to evaluate effects due to gate

capacitance of a branching transistor.

• 0.18µm CMOS process

Delay and eye-height degrade as capacitance increases.

- Assumption ; Acceptable degradation of eye-height is 5%.
- \rightarrow 75fF can be connected to the single-ended transmission
- line. (Then delay is increased by 20ps.)
- \rightarrow Gate widths of Rxs are required to be 5mm for amplifying the signal, and gate capacitance is 5fF in this process.

Thus, sixteen Rxs can be distributed to 6-mm-long TL with limited length of branching lines.

inks and comparison with the electrical interconnections for system-on-chip applications Lightwave lech, vol. 19, no. 10, pp. 1532-1542, 2001

GONGUSION

- We have proposed an on-chip transmission-line interconnect with branches.
- In the measurement result, the proposed interconnect realizes 4Gbps signal transmission.
- Transmission line interconnects can improve delay and power of a branching global-interconnect as well as a peer-to-peer interconnect, which will contribute speeding-up and power saving of LSI.