

A Process-Scalable RF Transce Ver for Short Range Communication in 90nm Si CMOS

Atsushi Shirane, Mototada Otsuru, Sang yeop Lee, Shin Yonezawa, Satoru Tanoi, Hiroyuki Ito, Noboru Ishihara, and Kazuya Masu Solutions Research Laboratory (SSRL), Tokyo Institute of Technology

Motivation & purpose

Tansceiver architecture

- huge passive components such as inductors.
- lowered in finer process.

RF CMOS becomes reality thanks to the process scaling down.

 High speed & high frequency operation can be realized by scaled CMOS. However, the area of RF CMOS circuits cannot be shrunk due to

Additionally, supply voltage is below 1V in recent CMOS and must be

Purpose is the development of an process-scalable RF transceiver.

				-
Sno	cifics	tione	of toet	
UDC				

Datarate	500
Modulation	Q
Frequency range	0.5~2
Distance	With
Supply voltage	

 RX and TX employ direct conversion architecture. All circuits are realized without inductor to save the area. Inverter-based topology is used for low supply voltage. TX baseband part makes 500Mb/s QPSK signal with the sideband suppression.

1V

2.5GHz hin 1m

PSK

Mbps

ess system

Measurement results

The proposed transceiver was fabricated with 90nm Si CMOS.

TX sim. & meas. results of OIP3 at 1GHz carrier

RASU'AMANT ASU IS

HONGUS ON

[2] ISSCC2011, J. Pan, et al. [WiMAX] [3] RFIC2008, Y. Chiu, et al. [WLAN] [4] TMTT2012, S. Hampel, et al. [Universal] [5] RFIC2010, C. Chang, et al. [WLAN] [6] JSSC2009, F. Zhang, et al. [UWB] [7] RFIC2009, K. Muhammad, et al. [GSM] [8] RFIC2011, R. Sadhwani, et al. [WLAN] [9] JSSC2009, P. Chen, et al. [GSM] [10] ISSCC2010, S. Joo, et al. [UWB] [11] JSSC2008, W. Si, et al. [Bluetooth] [12] JSSC2007, J. Zipper, et al. [CDMA2000] [13] JSSC2004, R. Ahola, et al. [WLAN] [14] JSSC2006, W. Kluge, et al. [Zigbee] [15] ISCAS2009, M. Liu,et al. [UWB]

[1] JSSC2012, M. Ingel, et al. [SDR]

 The transceiver realized 500Mb/s communication with 1V supply voltage and the area of 0.2mm².

The prototype transceiver was fabricated in 90nm Si CMOS.

 The transceiver employs the linearity compensated technique in TX and cherry-hooper and active peaking technique in RX.

• We proposed a process-scalable RF transceiver with inductor-less and inverter-based circuits.

Span: 600 MHz TimeLen: 9.833333 uSec	11000100 01000100 00000000 10101010 10111010 10000010 10101110 11100000 00001011 10101001 01000100		
age	1V		
9	500Mb/s		
mption	TX:11.9mW, RX:35.3mW, Lo and RX Buffer: 35mW		
ange	TX:0.5~2.5GHz, RX:0.5~1.5G		
vity	-60dBm at EVM= -20dB		
range	50dB		
ower	-5dBm with EVM= -28dB		
ea	0.2mm ²		

Measurement results of the demodulated signals at high gain mode, -43dBm input power, 1GHz carrier, 500Mb/s datarate and PRBS11.

HSF: High speed filtering

the bias in DAC.

the adjustment of

QPSK modulated spectrum at 500Mb/s with or without